Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37317297

RESUMEN

Poliovirus (PV), the virus that causes both acute poliomyelitis and post-polio syndrome, is classified within the Enterovirus C species, and there are three wild PV serotypes: WPV1, WPV2 and WPV3. The launch of the Global Polio Eradication Initiative (GPEI) in 1988 eradicated two of the three serotypes of WPV (WPV2 and WPV3). However, the endemic transmission of WPV1 persists in Afghanistan and Pakistan in 2022. There are cases of paralytic polio due to the loss of viral attenuation in the oral poliovirus vaccine (OPV), known as vaccine-derived poliovirus (VDPV). Between January 2021 and May 2023, a total of 2141 circulating VDPV (cVDPV) cases were reported in 36 countries worldwide. Because of this risk, inactivated poliovirus (IPV) is being used more widely, and attenuated PV2 has been removed from OPV formulations to obtain bivalent OPV (containing only types 1 and 3). In order to avoid the reversion of attenuated OPV strains, the new OPV, which is more stable due to genome-wide modifications, as well as sabin IPV and virus-like particle (VLP) vaccines, is being developed and offers promising solutions for eradicating WP1 and VDPV.

2.
Microorganisms ; 11(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36838326

RESUMEN

Viral infections have been frequently associated with physiological and pathological changes in the endocrine system for many years. The numerous early and late endocrine complications reported during the current pandemic of coronavirus disease 2019 (COVID-19) reinforce the relevance of improving our understanding of the impact of viral infections on the endocrine system. Several viruses have been shown to infect endocrine cells and induce endocrine system disturbances through the direct damage of these cells or through indirect mechanisms, especially the activation of the host antiviral immune response, which may lead to the development of local or systemic inflammation or organ-specific autoimmunity. In addition, endocrine disorders may also affect susceptibility to viral infections since endocrine hormones have immunoregulatory functions. This review provides a brief overview of the impact of viral infections on the human endocrine system in order to provide new avenues for the control of endocrine diseases.

3.
Virologie (Montrouge) ; 26(6): 415-430, 2022.
Artículo en Francés | MEDLINE | ID: mdl-36565260

RESUMEN

Epidemiological and experimental studies suggest that enteroviruses (EV) and particularly coxsackieviruses B (CVB) are likely to trigger or accelerate the onset of islet autoimmunity and the development of type 1 diabetes (T1D) in genetically susceptible individuals. Several mutually non-exclusive mechanisms have been proposed to explain the involvement of CVB in the pathogenesis of T1D. CVB can infect and persist in the intestine, thymic cells, monocytes/macrophages, ductal cells and pancreatic ß-cells, which leads to structural or functional alterations of these cells. A chronic inflammatory response and disruption of tolerance towards ß-cells due to CVB infections are able to promote the recruitment and activation of pre-existing autoreactive T-cells and the destruction of ß-cells. Vaccine or therapeutic strategies to control EV infections have been developed and open perspectives for the prevention or treatment of T1D.


Asunto(s)
Infecciones por Coxsackievirus , Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Enterovirus , Humanos , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/patología , Infecciones por Coxsackievirus/complicaciones , Enterovirus Humano B/fisiología , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...